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Abstract

If an agent does not have complete information
about the world-state, it must reason about al-
ternative possible states of the world and con-
sider whether any of its actions can reduce the
uncertainty. Agents controlled by a contingent
planner seek to generate a robust plan, that
accounts for and handles all eventualities, in
advance of execution. Thus a contingent plan
may include sensing actions which gather in-
formation that is later used to select between
di�erent plan branches. Unfortunately, previ-
ous contingent planners su�ered defects such as
confused semantics, incompleteness, and ine�-
ciency. In this paper we describe SGP, a de-
scendant of Graphplan that solves contingent
planning problems. SGP distinguishes between
actions that sense the value of an unknown
proposition from those that change its value.
SGP does not su�er from the forms of incom-
pleteness displayed by CNLP and Cassandra.
Furthermore, SGP is relatively fast.

1 Introduction

Classical planners make the unrealistic assumption that
the agent has complete information about the initial
state of the world. Reactive systems and agents that in-
terleave planning and execution, on the other hand, have
imperfect look-ahead and can get caught by irreversible
actions. Contingent planning | the generation of a plan
whose course of action varies based on the information
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gained from executing sensing actions | has the poten-
tial to yield robust plans even in the face of uncertainty.
The prospect of contingent planning is especially desir-
able in high stakes domains where even an improbable
mistake could prove costly. Unfortunately, previous con-
tingent planners have failed to attract widespread adop-
tion due to serious liabilities:

� They often fail to distinguish between sensory and
causal e�ects of actions, or treat sensing explicitly.

� They are often unable to generate a successful plan
if sensory actions are unavailable | even if such a
plan exists.

� Previous contingent planners are slow.

This paper presents the SGP contingent planning algo-
rithm, an extension of Graphplan [Blum & Furst, 1997]

that handles planning problems with uncertainty in the
initial conditions1 and with actions that combine causal
and sensory e�ects. Although we have not completed
a formal proof, we believe SGP is complete; certainly,
it �nds plans missed by CNLP [Peot & Smith, 1992]

and Cassandra [Pryor & Collins, 1996]. While contin-
gent planning will always be harder than corresponding
problems graced with complete information, SGP solves
small problems quickly | a dramatic improvement over
previous contingent planners, whose performance was so
abysmal that execution times were always omitted from
publications.

2 Background: Conformant Graphplan

Since SGP is based on previous planners, we briey
summarize the Graphplan algorithm [Blum & Furst,
1997] as extended to handle conditional e�ects [Gazen
& Knoblock, 1997] and conformant planning, i.e., un-
certainty but no sensing actions [Smith & Weld, 1998].

1Space precludes description of a direct method of han-
dling actions with uncertain e�ects (see [Smith & Weld,
1998]), but they can be modeled as actions whose determin-
istic e�ects are conditional on hidden state variables de�ned
in the initial state.



Graphplan, in its original form, solves STRIPS plan-
ning problems in a deterministic, fully-speci�ed world.
Both the preconditions and e�ects of its action schemata
are conjunctions of literals (i.e., denoting the add and
delete lists). Graphplan alternates between two phases:
graph expansion and solution extraction. The graph
expansion phase extends a planning graph until it has
achieved a necessary (but insu�cient) condition for plan
existence. The solution extraction phase then performs
a backward-chaining search for an actual solution; if no
solution is found, the cycle repeats.

2.1 Graph Expansion

The planning graph contains two types of nodes, proposi-
tion nodes and action nodes, arranged into levels. Even-
numbered levels contain proposition nodes (i.e., ground
literals), and the zeroth level consists precisely of the
propositions that are true in the initial state of the plan-
ning problem. Nodes in odd-numbered levels correspond
to action instances; there is one such node for each action
instance whose preconditions are present (and are mu-
tually consistent) at the previous level. Directed edges
connect proposition nodes to the action instances (at the
next level) whose preconditions mention those proposi-
tions, and directed edges connect action nodes to sub-
sequent propositions made true by the action's e�ects.
Graphplan de�nes a binary mutual exclusion relation
(\mutex") between nodes in the same level as follows:

� Two action instances at level i are mutex if either

{ Interference / Inconsistent E�ects: one action
deletes a precondition or e�ect of another, or

{ Competing Needs: the actions have precondi-
tions that are mutually exclusive at level i� 1.

� Two propositions at level i are mutex if all ways
of achieving the propositions (i.e., actions at level
i � 1) are mutex.

2.2 Solution Extraction

Suppose that Graphplan is trying to generate a plan for
a goal with n conjuncts, and it has �nally extended the
planning graph to an even level, i, in which all goal
propositions are present and none are pairwise mutex.
Graphplan now searches for a solution plan by consider-
ing each of the n goals in turn. For each such proposition
at level i, Graphplan chooses (backtrack point) an action
a at level i � 1 that achieves the goal. If a is consistent
(non-mutex) with all actions that have been chosen so
far at this level, then Graphplan proceeds to the next
goal, otherwise if no such choice is available Graphplan
backtracks. After Graphplan has found a consistent set
of actions at level i� 1 it recursively tries to �nd a plan
for the set of all the preconditions of those actions at
level i � 2. The base case for the recursion is level zero
| if the propositions are present there, then Graphplan

has found a solution. Otherwise, if backtracking fails,
then Graphplan extends the planning graph and tries
again.

2.3 Conditional E�ects

Recently, several authors have described methods that
allowGraphplan to handle operators with conditional ef-
fects. The simplest approach breaks operators with con-
ditional e�ects into a number of separate operators (by
considering all minimal consistent combinations of an-
tecedents in the conditional e�ects) [Gazen & Knoblock,
1997]. To illustrate, consider the following simple model
of the action of taking medication:

Medicate: pre: e�: (when I :I)
(when :H D)

in which I means the patient is Infected, H means he
is Hydrated, and D means he is Dead. If the patient
is Infected before the action then he will no longer be
Infected afterwards: :I. But if the patient takes medica-
tion when he is not Hydrated (i.e., :H), then the result
is Death. This ADL operator is expanded into the fol-
lowing 4 disjoint2 STRIPS operators, called aspects of
the ADL original:

Med1: pre: (and I H) e�: :I
Med2: pre: (and I :H) e�: (and :I D)
Med3: pre: (and :I H) e�:

Med4: pre: (and :I :H) e�: D

Note thatMed3 has no e�ects; we count it as an aspect
to facilitate subsequent bookkeeping.

2.4 Conformant Planning

For simplicity, we only describe the Graphplan exten-
sions required to handle uncertainty in the initial con-
ditions; [Smith & Weld, 1998] explains how to handle
actions whose e�ects are uncertain as well. In classi-
cal Graphplan, the initial conditions are speci�ed as a
complete conjunction of positive and negative literals.
To model uncertain initial conditions, one provides a set
of w possible worlds, each modeled as a conjunction of
literals. The basic idea behind conformant Graphplan
(CGP) is to extend a separate planning graph for each
possible world (PW), keeping track of mutual exclusion
relations across worlds, and then search backwards for a
plan that works in all possible worlds.

To illustrate the algorithm, suppose that there is a
Drink action with a single e�ect that makes the patient
Hydrated unconditionally. Drink has one aspect:

Drink1: pre: e�:H

2Although the di�erent aspects of an action are mutually
exclusive, multiple aspects may appear at levels � 3 because
proposition levels (except the initial state) can contain both
a proposition and its negation.
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Figure 1: Planning graph for two possible worlds. Gray
arcs indicate No-op actions for persistence of proposi-
tions from one level to the next. Arcs between two ac-
tions denote mutex relationships (to avoid clutter, not
all mutexes are shown).

Suppose that initially there are two PWs: w1=
f:I;:H;:Dg, and w2= fI;H;:Dg; the goal is to get the
patient uninfected and not dead: :I ^ :D. As we shall
see, the best plan in this example is to �rst Drink (elim-
inating the interaction between dehydration and subse-
quent medication in w1) and then to Medicate. Figure 1
shows the planning graph expanded to level four.
Since both of the goal propositions occur (nonmutex3)

at level 2 in each of the possible worlds, there is the
potential of a solution and conformant Graphplan must
try to extract a solution.
CGP considers each PW in turn. In w1 both goals are

initially true and hence are carried through by No-op

actions. In w2 :D is also made true by a No-op while :I
can only be achieved by Med1. Since there are no mutex
relations between any of these actions one might think
that we have found a solution, but an additional check
is necessary. If we choose to perform an action, we must
consider its e�ects in all worlds, not just the speci�c
PW in which the action was added. This is because
(without sensing) CGP doesn't know which of the worlds
it is really in and therefore cannot con�ne the e�ects of
an action to a single PW. To compound matters, each
world is di�erent, so performing an action may lead to
one aspect of the action in one possible world and a
completely di�erent aspect in another PW. Our example

3Actually it is possible to derive cross-world \induced mu-
texes" in this example, but while this optimization speeds
planning (e.g., it would eliminate the need for searching back-
wards at level 2), space precludes its presentation; see [Smith
& Weld, 1998] for the details.

illustrates these complications. The decision to execute
Medicate in w2 (which manifests as Med1) means that
some aspect ofMedicate will execute in w1 as well: Med4,
in fact. Thus, CGP must consider the e�ect of Med4 in
w1| which unfortunately includes death, D, in violation
of the goal. Since no backtracking alternative remains,
CGP concludes that no solution exists at level 2.
Before proceeding, we augment our terminology. We

write A:u to refer to aspect A in world wu. Similarly, we
use P:u to refer to proposition P in world wu. Suppose
aspect A:u is present at level i in a PW planning graph
and A':v is another aspect of the same action at level
i in the graph, and v 6=u. We say that A:u possibly in-

duces A'v, and vice versa. In the example above Med1:2
possibly induces Med4:1 at level 1.
Sometimes it is possible to prevent an undesirable,

possibly-induced aspect using confrontation. To prevent
or confront aspect A':v at level i, the planner needs to
assure that its precondition is false at level i� 1 and re-

mains false during the execution of the other aspects at
level i. (Otherwise, A':v might �re if some other parallel
action happened to be executed �rst, and this paral-
lel action established the precondition of A':v.) Thus if
A':v has preconditions P1, P2, . . . , Pk CGP must choose
(backtrack point) a precondition Pi:v that can be made
false at level i� 1 and can be held false until level i+ 1.
One easy way to implement this is to check that the
No-op operation persisting :Pj :v

1. Exists at level i, and

2. Is not mutex with any other aspect added during
solution extraction at level i.

If so, this No-op is added to the plan, and its precondition
:Pj:v is added to the subgoals at level i � 1. Note that
when doing confrontation, the choice of precondition to
confront provides an additional backtrack point.
For an example of confrontation, consider what hap-

pens when CGP tries to extract a solution from level 4
of the medication example. At �rst glance, level 4 ap-
pears identical to level 2. In w1 both goals are present
at level 4 solely due to No-op actions, so these are added
to the plan. In w2 there is also no choice: :D is made
true by a No-op alone, while :I can only be achieved by
Med1:2. Again, CGP must consider the e�ects of the as-
pects that are possibly induced by Med1:2, but this time
there are two such aspects: harmless Med3:1 and deadly
Med4:1. As before CGP discovers that Med4:1 is mutex
with the :D-No-op:1 already in the plan, soMed4:1 must
be confronted, and this decision leads to a choice: which
of Med4:1's preconditions should be negated? Suppose
CGP chooses to negate :H, then CGP adds an H-No-op
action to the plan. H-No-op causes H:1 to be a subgoal
at level 2 which eventually leads CGP to add Drink1:1
to the plan at level 1. Thus the �nal, successful plan is:
Drink; Medicate | it achieves the goals in both PWs.



3 Representing Sensory Actions

For SGP we de�ne a simple but expressive sensor model
called SSM. In addition to traditional causal e�ects, ac-
tions have zero or more observational e�ects, each of
which is speci�ed using the syntax (sense w�) where
w� denotes an arbitrary logical expression composed of
Graphplan propositions. Thus each sense e�ect corre-
sponds to a primitive observation that returns one bit of
information when executed: T if the logical expression
is true in the world immediately prior to execution, and
F otherwise.
In order to simplify SGP's handling of sensory actions,

we make the following restrictions: sense terms may not
be placed in the consequent of conditional e�ects, and
actions with sense e�ects may not have preconditions.
To understand why banning sense terms from the con-
sequents of conditional e�ects does not limit expressive-
ness, consider a hypothetical action which does exactly
that: (when P (sense Q)). Presumably, the intent behind
this statement is for the agent to observe nothing if P is
false, and to gain information about Q otherwise. Thus,
by executing this action, the agent is distinguishing be-
tween worlds in which the following mutually exclusive
conditions hold: :P;P^Q, and P^ :Q. In SSM we sim-
ply require that this information gain be made explicit
with the use of multiple unconditional sense e�ects. For
example, one could achieve the same result with the pair
of e�ects: (sense P) and (sense (and P Q)). The other re-
striction was that no sensory action could have precon-
ditions; this is of no consequence since every action with
preconditions can be rewritten to use conditional e�ects
with the addition of a special error proposition.
SSM is capable of representing any noise-free sensor

that returns a bounded amount of information. To see
this, note that if a sensor returns a bounded amount of
information, then its information gain can be encoded in
k bits and k sense e�ects will su�ce.

4 Representing an Agent's Knowledge

After executing an action with e�ect (sense P) the agent
knows whether P is true or false, but this form of knowl-
edge is di�cult for the planner to exploit. As we shall
see, it is much easier to generate a contingent plan if we
explicitly represent the agent's ability to discriminate be-
tween its PW and the other possibilities. To this end, we
de�ne the proposition K:u :v to mean that if the agent
is in wv then it will know that it is not in wu.

4

4For readers familiar with possible world semantics, the
following translation may help. If the planning domain con-
tains k propositions, then in theory there are 2k possible
worlds. But the planning problem's initial conditions rules
out all but w of these. The Kripke structure for the initial
state of our planning problem has every remaining PW acces-
sible from all w� 1 other worlds, because the planner has no
additional knowledge of which of the w worlds the agent is in.

Consider a domain described in terms of two propo-
sitions, P and Q; suppose that we have no knowledge
about the initial state, so there are four PWs covering
all possible combinations of T and F values. Suppose
further that there are two actions: A senses P^Q and
B senses P_Q. The table below shows the knowledge
propositions that result from executing A, B, or both
sensory actions.

Init After A After B After A,B
w1 P^Q K:2 :1 K:4 :1 K:2 :1

K:3 :1 K:3 :1
K:4 :1 K:4 :1

w2 P^:Q K:1 :2 K:4 :2 K:1 :2
K:4 :2

w3 :P^Q K:1 :3 K:4 :3 K:1 :3
K:4 :3

w4 :P^:Q K:1 :4 K:1 :4 K:1 :4
K:2 :4 K:2 :4
K:3 :4 K:3 :4

Note that each sensor de�nes a di�erent partition on
the possible worlds. If the agent is in w1 and executes A
then it will know that it is not in any of the other worlds,
but if the agent is in w2, A will only tell it that it is not
in w1.

5 SGP Graph Expansion

Like its ancestor Graphplan, SGP is composed of graph
expansion and solution extraction phases. SGP's expan-
sion phase is based on that of CGP, with one major
di�erence: SGP calculates the set of possible knowledge
propositions for level i+1 from each action's logical sen-
sor de�nitions and the state of the planning graph at
proposition level i � 1. This calculation is especially
tricky when i � 3 because both proposition P and its
negation :P might coexist in any given world at propo-
sition levels past the initial state.
For example, suppose that there are two worlds:

w1=f:I;:Bg and w2=fI;:Bg where Imeans that the pa-
tient is Infected, and B means that the culture is Blue.
There are two actions. Inspect senses B, while Stain has
a conditional e�ect that makes the culture blue exactly
when the patient is infected. We show the aspects of
Stain below, and Figure 2 shows the planning graph af-
ter SGP has extended it to level 4.

Stain1: pre: I e�: B

Stain2: pre: :I e�:

Note that executing the sensing action Inspect has no
e�ects at level 1. Since :B is true in both w1 and w2,
the agent receives no useful informationwhen told that B
is false. The situation is di�erent, however, when Stain

is executed at level 1 and Inspect is executed at level
3. Stain's conditional e�ect changes the world in a way
that allows Inspect to discriminate. As a result level

K:u :v means that the agent has received information such
that wu is no longer accessible from wv in the new Kripke
structure [Fagin et al., 1995].
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Figure 2: Planning graph showing interaction between
causal (Stain) and sensing (Inspect) actions.

4 contains K:2 :1 and K:1 :2; note that these special
propositions are supported by a single action instance
which links to preconditions in two separate worlds. This
type of structure is quite unique to SGP.

Intuitively, the SGP planning graph expansion algo-
rithm considers the set of possible sensor values obtain-
able in each PW, then takes the cross product to deter-
mine the set of partitions which could be induced by the
sensor (typically there will be more than one possible
partition if causal actions can a�ect a sensed proposi-
tion). These partitions lead to the introduction of K:u :v
propositions at subsequent levels.

Before making this procedure precise, we introduce
more terminology. We say a proposition P is certain in

possible world wu at level i if either P or :P is missing
from the planning graph for wu at level i. Note that all
propositions are certain in all PWs at level 0. In general,
a proposition will be certain in a world unless a causal
action can change its value. For example, B is certain in
w1 at level 2, but not in w2 at level 2.

Figure 3 presents the SGP planning graph expansion
procedure. Suppose we call it to expand the graph
of Figure 2 from level 2 to 4. After SGP adds the
purely causal aspects Stain2:1 and Stain1:2 to level 3,
SGP considers Inspect and iterates over PWs to com-
pute C = fhhFi; hTii; hhFi; hFiig. Mapping the sensor
function (which in this case is the identity function) on
the �rst element of C yields D = hF;Ti shows that the
sensor can distinguish the two worlds. Thus SGP adds
K:2 :1 and5 K:1 :2. Note that mapping the sensor func-

5If sensors are noiseless, then these knowledge proposi-
tions will always be symmetric. To see how asymmetric
knowledge could be deduced from a noisy sensor, suppose
the patient is uninfected in w1 and infected in w2, and con-
sider a blood test that might give false positives but never
false negatives. One value of D will return F for w1 and T
for w2, and since the agent knows that the F can't be a false
negative it can conclude K:2 :1. The view from w2 is dif-
ferent, however; the agent can't rule out the possibility of a
false positive and hence gains no information.

ExpandGraph from prop level i� 1 to i+ 1
Foreach possible world wu

Foreach aspect A of a nonsensory action
If A's preconditions occur non-mutex at level i� 1,
Then instantiate A at level i, its e�ects at i+ 1, and
link the instance to its preconditions and e�ects.

Foreach sensory action, S, with e�ect (sense �)
Suppose � mentions k atomic propositions fP1; : : : ;Pkg.
Foreach possible world wu

Let Vj denote the set of values of Pj:u at level i� 1
;; I.e. Vj is either fTg, fFg, or fT; Fg

Let Cu be a subset of V1 � : : :� Vk
by �ltering out all mutex combos
;; If each prop is certain in wu at i� 1 then jCuj = 1
;; But in the worst case jCuj = 2k for each PW wu

Let C be a subset of Ci � : : :� Cw, by
�ltering out cross-world mutexes
;; If each Pj is certain in all worlds, then jCj = 1

;; Worst case: jCj = (2k)w

Foreach element, c 2 C
;; c is a w-tuple of k-tuples of boolean values for Pj
;; Each k-tuple, thus leads to a value for �
Let SA be a new instance of S at level i
Link the elements of c at i� 1 as preconds of SA
Add any causal e�ects of SA to level i+ 1
Map � on c getting a boolean w-vector, D
;; D = the possibly sensed vals in all w worlds

For u = 1 to the number of possible worlds w
For v = u+ 1 to w
If D(u) 6= D(v)
Then add K:u :v and K:v :u to level i+ 1, and
link them to SA

Add all mutex relations for action level i
Add all mutex relations for prop level i+ 1
;; There are no changes to the mutex rules!

Figure 3: Pseudocode for SGP Graph Expansion

tion on the other element of C yields D = hF;Fi which
shows that the sensor's ability to distinguish is not as-
sured. In particular, the agent must stain the culture
before inspecting. Note how the precondition arcs for
Inspect1 in Figure 3 store this information for exploita-
tion during solution extraction.

6 SGP Solution Extraction

Classical plans, e.g. those produced by UCPOP, Graph-
plan, and CGP, correspond to straight-line programs;
each action is executed in sequence. Contingent plans,
on the other hand, correspond to programs with if-then-
else statements; they can be modeled as an execution
tree whose branches refer to information gained by pre-
vious sensory actions [Etzioni et al., 1992]. An alterna-
tive model, used in C-Buridan [Draper, Hanks, & Weld,
1994] corresponds to a DAG and hence allows plans that
rejoin after branches. In this representation each action
in the plan is associated with a context that speci�es the
conditions (based on previous observations) under which
to execute the action. When an action is �rst added to
the plan, its context is T; conditions get conjoined in



response to threats via conditioning, the decision not to
execute an action in certain worlds [Peot & Smith, 1992].
SGP's solution extraction procedure is a logical gen-

eralization of CGP's algorithm [Smith & Weld, 1998].
When SGP adds aspect A:u into the plan in service of
goal P:u, it considers all possibly-induced aspects A':v to
see if they are mutex with previously added aspects. If
A':v does conict, then there are three choices:

1. SGP can confront A':v, which amounts to forcing
a di�erent aspect, A":v, of the action to execute
instead, or

2. SGP can condition A':v on a sensor, by �nding some
sensor that discriminates between wu and wv so the
agent can execute A in wu but not in wv, or

3. SGP can backtrack, i.e. retract its decision to sup-
port P:u with A:u (or retract an even earlier deci-
sion).

6.1 Representing Contingent Plans

From an implementation point of view, however, SGP's
solution extraction procedure is very di�erent from
CGP's, because SGP represents each level of the
partially-speci�ed plan as a dynamic constraint satisfac-
tion problem (CSP) [Mittal & Falkenhainer, 1990], i.e.
a dynamically-varying set of variables and values with
associated constraints. When an aspect of action A is
added to level i of a plan with w possible worlds, SGP
creates w new CSP variables: A1; : : : ; Aw. The set of
possible values of Au equals the set of aspects of A that
are present in the planning graph in wu at level i plus
the special value No-exec. Suppose SGP assigns A1 and
A2 both to equal the value No-exec, and for all u > 2
Au denotes an aspect of A. This assignment of values
represents the decision to execute A in all PWs except
w1 and w2.
Of course, the only way that an agent could execute

A in all PWs except w1 and w2 is if the agent is ca-
pable of distinguishing between w1 or w2 and all other
worlds. Hence, the assignment above will lead to knowl-
edge subgoals at level i� 1. Speci�cally, the agent must
know both K:u :v and K:v :u for v 2 f1; 2g and forall
u > 2. Note that the agent need not know which world it
is in (e.g., it need not distinguish between w1 and w2);
it simply must be able to rule out those worlds when in
some other world wu.

6.2 Example

Consider a domain with the Medicate, Stain and Inspect

actions de�ned earlier (but not Drink). Suppose
there are two initial worlds: w1=f:I;:H;:B;:Dg and
w2=fI;H;:B;:Dg. In other words, the culture is de�-
nitely not Blue, the patient is not Dead, it is unknown if
the patient is Infected and if he is Hydrated, but these
last two propositions are correlated. The goal is to have

the patient uninfected and alive: :I ^ :D. As we shall
see, the best plan is to stain the culture, inspect it, and
medicate only if the culture is blue.

ExtractSoln(goals G = f: : : ;P:x; : : :g at level i)
If i = 0 and all goals in G are in the appropriate initial PW
Then return success
Elseif i = 0 or G contains P:x and Q:y which are mutex
Then backtrack.
Let V = fg ; V will be the CSP variables to be solved
Foreach P:x 2 G do
Choose aspect Aj:x (from level i� 1) that produces P:x
Backtrack if there is no such Aj:x, or
If 9v 2 V such that Aj:x is mutex with all of v's values.

Let A be the action from which aspect Aj:x was derived
For each PW wy create the new CSP variable Ay

If Ay is not already in V , then add it
;; The domain of values for Ay is the set of aspects
;; of A in wy, plus the special value No-exec

Restrict the domain of Ax to Aj

Foreach pair of variables Ay;Bz 2 V
Let the consistency constraints between Ay and Bz

be the set of non-mutex pairs of aspects Aj:y, Bk:z
where Ay and Bz derive from actions A and B

Foreach action A
Forall distinct pairs of worlds wy, wz

If K:y :z is in the planning graph at level i
Then Ay = No-exec is consistent with all values for Az

Else Ay = No-exec is only consistent with Az = No-exec
Use any CSP method to choose an assignment 8v 2 V
Backtrack if no assignment exists.

Let Gi�2 = fg ; This will hold the set of next goals
Foreach Ax 2 V
If Ax 6= No-exec
Then let Gi�2 = Gi�2[ the preconds of the value of Ax

Else foreach Ay 2 V whose value 6= No-exec
Let Gi�2 = Gi�2 [ fK:x :y;K:y :xg

Recursively call ExtractSoln(Gi�2 , i� 2)

Figure 4: Pseudocode for SGP solution extraction

We now explain how the solution extraction algorithm
(Figure 4) derives this plan from the planning graph
shown in Figure 5, starting at level 6. In w1, both goals
can only be supported by No-ops, so SGP commits to
them. In w2 SGP has a choice between No-op and Med1;
suppose it chooses Med1. This spurs the creation of two
CSP variables: M1 andM2. The domain ofM2 is simply
Med1, but the domain of M1 = fMed4;No-execg. Since
Med4 is mutex with :D-No-op, constraint propagation
demands that Medicate not be executed in w1. Note
that confrontation is ruled out by the absence of alter-
native aspects in the domain ofM1 | the only consistent
choice is No-exec. This leads SGP to subgoal on K:2 :1
and K:1 :2 at level 4 which eventually causes Inspect1 to
be added from level 3 and Stain1 to be added from level
1.

7 Experimental Results

SGP is implemented in Allegro Common Lisp 4.3 and
accepts variablized action schemata as input. Table 6
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Figure 5: Planning graph for Medical-1 problem.

Name # PWs CPU Plan graph size (a, p)
Medical-1 2 20 (11,6) (18,8) (20,8)
Medical-2 3 40 (30,12) (50,14) (52,14)
Medical-3 4 230 (45,15) (94,18) (100,18)
Medical-4 5 2600 (60,17) (156,21) (168,21)
Ski 3 2152 (57,13) (210,18) (224,19)

(227,19) (227,19)
Evanston 2 26 (30, 12) (46, 16) (51, 16)

(52, 16)
Fetch-2 4 48 (36, 13) (80, 14) (84, 14)
Coin-1 2 12 (14, 8) (25, 10) (28, 10)

Figure 6: Performance of SGP on sample problems.
CPU times are in msec on a 300Mhz Pentium II. For
each pair of levels in the planning graph, we show (a, p)
| the number of actions and the number of propositions.

shows SGP's performance on a variety of domains, as
measured on a 300 MHz Pentium II running Linux. The
Medical-1 problem was described in the previous sec-
tion. In the other medical problems the patient is ei-
ther healthy or has one of n diseases; there are n sep-
arate medicate actions that provide speci�c cures, but
all medications are deadly unless the patient has the cor-
responding infection. Ski refers to the navigation prob-
lem (uncertain road closure) of [Peot & Smith, 1992].
Evanston, Fetch-2, and Coin-1 are from [Pryor & Collins,
1996].

Next, we examined the e�ect of additional sensory ac-
tions on SGP's performance. We chose the \Bomb in the
toilet" domain [McDermott, 1987] with �ve packages and
a single toilet. Exactly one of the packages contains a
bomb. To defuse the bomb, the o�ending package must
be dunked in an unclogged toilet. Dunking any pack-
age will clog the plumbing, so the agent must be careful
to dunk correctly. Each sensory action sensed a propo-

Number of sensory actions 1 2 3 4
CPU time (msec) 400 420 460 500

Figure 7: Performance of SGP on \Bomb in the toilet"
domain problems with �ve packages and one toilet.

# PWs CPU time (msec) Plan graph size (a,p)
4 10 (18,8) (34,8)
8 40 (36,12) (84,12)
12 120 (54,16) (150,16)
16 400 (72,20) (232,20)
20 1590 (90,24) (330,24)
24 7450 (108,28) (444,28)

Figure 8: Performance of SGP as a function of uncer-
tainty in the initial state.

sition (e.g., metal-present) that was perfectly correlated
with the existence of the bomb in the particular package.
As shown in Figure 7, the performance of SGP degrades
roughly linearly with the number of sensory actions.
In the next experiment (Figure 8), we held the number

of sensory actions �xed while we varied the uncertainty
of the initial state. We used an arti�cial domain for this
experiment; the goal was to achieve proposition P. As we
varied the number of PWs, P was made initially true in
half of them. To increase the number of possible worlds,
we introduced a number of other unused propositions,
exactly one of which was ever allowed to be true.
During our experimentation, we found domains which

caused SGP di�culty. The factor limiting SGP seems
to be the large number of sensory actions that can be
instantiated | worst case 2kw where w is the number
of PWs and k denotes the number of atoms in the for-
mula being sensed. In domains where actions sense a
single proposition that is certain in most worlds, SGP
runs quite quickly. However, when the sensed proposi-
tion is not certain in many of the PWs or a complicated
formula is being sensed, then SGP creates an exponen-
tial number of sensory actions, which slows both graph
expansion and solution extraction. Fortunately, most
domains can be engineered (i.e., by thinking carefully
about the ontology) to avoid these problems.

8 Conclusions

This paper described SGP, an extension of Graphplan
that handles uncertain initial conditions and actions
with a mixture of causal and sensory e�ects (as expressed
in the SSM sensor language). The central innovations in
the SGP algorithm are:

1. An extension to the forward-chaining, graph-
expansion phase that derives knowledge proposi-
tions from SSM sensor de�nitions and the previous
planning-graph proposition layer.

2. The incorporation of the conditioning threat-
resolution method into the backward-chaining,



solution-extraction phase.

In addition, SGP generates contingent plans with
branches that can rejoin (i.e., a plan is a DAG not a
tree). Furthermore, SGP's formulation of solution ex-
traction as a dynamic CSP problem is novel.
Since there might be an exponential number of PWs,

contingent planning can be exponentially slower than
planning with complete information; however, in do-
mains where mistakes are devastating, the cost may be
worth it. Previous papers on contingent planners have
neglected to provide quantitative measures of planner
speed, instead admitting \less than practical" perfor-
mance. In contrast, we demonstrate that SGP handles
small to medium-sized problems quite quickly.

8.1 Related Work

Space precludes a discussion of work on interleaved
planning and execution or the representation of un-
certainty; we focus on previous contingent planners.
Warplan-C [Warren, 1976] is the patriarch. Univer-
sal plans [Schoppers, 1987] and Gapps [Kaelbling, 1988]

provide methods for constructing exhaustive contingent
plans, but they did not allow explicit description of sens-
ing actions; instead they assumed that complete sensory
information would be available at every point during the
execution. CNLP [Peot & Smith, 1992] extended SNLP
to construct contingent plans. CNLP is notable for its
introduction of conditioning, but it assumed free sens-
ing (i.e., it assumed the agent always knew the result
of nondeterministic actions once they were performed).
UWL [Etzioni et al., 1992] formalized the notion of ob-
servational actions using runtime variables, and provided
an algorithm for generating contingent plans. [Gene-
sereth & Nourbakhsh, 1993] described techniques for
speeding world-space search given incomplete informa-
tion. Cassandra [Pryor & Collins, 1996] was a fully-
implemented contingent planner that distinguished be-
tween sensing actions and actions that have uncertain
outcomes; in addition Cassandra allowed operators with
conditional e�ects. PLINTH [Goldman & Boddy, 1994]

is a total-order planner akin to CNLP. None of these
systems could cope with uncertainty if sensing actions
were unavailable | even if a working (conformant) plan
existed. The probabilistic C-Buridan planner [Draper,
Hanks, & Weld, 1994] overcame this limitation and in
addition incorporated an elegant sensor model which ac-
counted for noisy sensors. Unfortunately, C-Buridan was
so slow that it could not solve the problems listed in this
paper.

8.2 Future Work

In the future we hope to augment the SGP sensor model
to handle probabilities associated with initial PWs. We
would also like to model noisy sensors ala C-Buridan.
A di�erent thread would be to extend SGP to handle

sensory actions that use runtime variables [Etzioni et al.,
1992]. There are many optimizations to be explored, and
we seek to run more experiments.
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